Hamiltonian Formulation of O(2) Puality

formulating the above duality in terms of a 2+1-2 quantum Hamilbonian is illuminating. As you will show in poets, the 3000 model corresponds

to the blowing quantum Hamiltonian in 20:

$$H = - + \sum_{\langle ij \rangle} w_{ij} (\theta_{ij} - \theta_{ij}) + U_{ij}^{\sum} (N_{ij} - \overline{N})^{2} \quad \text{where}$$

 \overline{N} is an integer (we can set $\overline{N} = 0$).

Introduce bond variables
$$e_{ij} \text{ on the dual}$$

$$e_{k} = -\frac{\theta_1 - \theta_2}{2\pi}$$

$$\text{lattice as}$$

$$e^{k} = \frac{2 \times 70}{2\pi}$$

i.e.
$$e_{\kappa} = -\frac{\nabla_{\gamma}\theta}{2\pi}$$
, $e_{\gamma} = \frac{\nabla_{\gamma}\theta}{2\pi}$

One also introduces fields conjugate to e_x, e_y : $[e_x, a_x] = i = [e_y, a_y]$. $[a_x, a_y] = [e_x, e_y] = 0$

One might raincy think that $\vec{\nabla} \cdot \vec{E} = \vec{\nabla} \cdot [\frac{2}{2} \times 79]$ = 0but since θ is a compact variable, it allows for various $\vec{\nabla} \cdot \vec{E} = -\hat{Z} \cdot [\vec{\nabla} \times \vec{\nabla} \theta]$

 $Hz - t \sum_{\langle ij \rangle} cos (2\pi e_{ij}) + U\sum_{\langle ij \rangle} (2\pi e_{ij})^2$

= $m_V = vorter$ density. Crucially, e_{ij} is not an integer, its just

a compact variable between 0 to 27.

On the other hand, a 5/2x has integer eigenvalues. Since it's proportional to a sum of N;'s.

The above theory already looks like a guage theory but it's not get formulated in terms of vortices. To do that, let's relax the compositions

of e (which relaxed the integer-valued ress of a): expand $cos(2\pi e_{ij}) \rightarrow$ $H \approx \frac{t}{2} \sum (2\pi e_{ij})^2 + \sqrt{\sum} (\frac{\nabla \times \alpha}{2\pi})^2 - \sum t_i w_i (\alpha)$

with $v.e=n_v$, and t_v enforces the integenralued-verse et a softley. However costa)

is not quage invariant. Separale a into longitudinal and transverse components: a = a1 + a11, where $\forall \times \alpha_{\parallel} = 0$, $\forall \cdot \alpha_{\perp} = 0$. Write $\alpha_{\parallel} = -\nabla \theta_{\vee}$

 $\frac{1}{2}\sum(2\pi e_{ij})^{2} + u\sum(2\pi e_{ij})^{2}$

- t, cos (70- 01)

Ovis the phase of the matter-field (= Nortex).

 $a \rightarrow a + 7a$ 6 1 × (1.E - m) = 7 Therefore, two is a theory of point-like Particles (= rortices) coupled to a non-compact UCI) quage field. Phase-diagram: Higgs to broton phase Phase = Superfluid = Mott insulator. $Q \neq \langle e'_{\theta} \rangle \neq Q$ $\langle e_{i\theta \nu} \rangle \neq 0$ In the original variables (i.e. 0, n), the Superfiluid Phase has a local order-parameter < eil; >. In the dual Hamiltonian however, the photon phase doesn't have a local The tiggs phase doesn't break eng sym, so it's trivial paramagnet. Oiger boronnerer.

 $\theta_{V} \rightarrow \theta_{V} + \omega$

The guase invariance

corresponds to:

The above thamiltonian also wakes it transparent the consequence of condensing pair of vortices condensing single vortex. $\langle e^{2i\theta i} \rangle \neq 0$, $\langle e^{i\theta i} \rangle = 0$. '\-e .

 ω s ($2\theta - 20L$) The Higgs term is \sim cos (2a1).

=) U(1) grage field gest Higgsed down to

 \mathbb{Z}_2 .